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SUMMARY

Based on the Bhatnagar–Gross–Krook (BGK) Boltzmann model equation, the uni�ed simpli�ed velocity
distribution function equation adapted to various �ow regimes can be presented. The reduced velocity
distribution functions and the discrete velocity ordinate method are developed and applied to remove
the velocity space dependency of the distribution function, and then the distribution function equations
will be cast into hyperbolic conservation laws form with non-linear source terms. Based on the unsteady
time-splitting technique and the non-oscillatory, containing no free parameters, and dissipative (NND)
�nite-di�erence method, the gas kinetic �nite-di�erence second-order scheme is constructed for the
computation of the discrete velocity distribution functions. The discrete velocity numerical quadrature
methods are developed to evaluate the macroscopic �ow parameters at each point in the physical space.
As a result, a uni�ed simpli�ed gas kinetic algorithm for the gas dynamical problems from various �ow
regimes is developed. To test the reliability of the present numerical method, the one-dimensional shock-
tube problems and the �ows past two-dimensional circular cylinder with various Knudsen numbers are
simulated. The computations of the related �ows indicate that both high resolution of the �ow �elds
and good qualitative agreement with the theoretical, DSMC and experimental results can be obtained.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to study the aerodynamics from various �ow regimes, the traditional way is to deal
with them with di�erent methods, such as the Monte-Carlo method for rare�ed �ow and the

∗ Correspondence to: Li Zhihui, Department of Enginerring Mechanics, Tsinghua University, 100084 Beijing, China.
† E-mail: zhli0097@x263.net

Contract=grant sponsor: National Nature Science Foundation of China; contract=grant number: 19972008
Contract=grant sponsor: National Nature Science Foundation of China; contract=grant number: 10072077

Received 17 April 2002
Copyright ? 2003 John Wiley & Sons, Ltd. Revised 16 October 2002



362 Z.-H. LI AND H.-X. ZHANG

Navier–Stokes (N–S) equations for the continuum �ow. Both the methods are totally di�erent,
and the computational results are di�cult to be linked up smoothly with altitude. In this study,
it is to be considered whether a uni�ed numerical algorithm to predict the gas �ows over the
complete spectrum of �ow regimes can be found.
The Boltzmann equation [1] can describe molecular transport phenomena of various �ow

regimes and act as the main foundation for the study of gas dynamics. However, it is very dif-
�cult to accurately solve the Boltzmann equation describing complex �ows. On the other way
round, based on the mass, momentum and energy conservation laws, kinds of kinetic model
equations [2–4] resembling to the original Boltzmann equation concerning the various order of
moments have been put forward with applying the basic characteristics of molecular movement
and collision approaching to equilibrium. Based on the zeroth, �rst and second-order approx-
imation of the Maxwellian distribution, the Euler, N–S and Burnett equation describing the
macroscopic gas dynamics can be, respectively, deduced by applying the Chapmann–Enskog
procedure [1, 5] to the Boltzmann equation or the simple Bhatnagar–Gross–Krook (BGK)
model equation [2]. Formerly, it was considered that the BGK equation only describes the
�ows in the equilibrium or near equilibrium state [1, 6]. Nowadays, it is suggested from Refer-
ences [4, 7–9] that the equation can also qualitatively characterize the complex gas �ows from
various �ow regimes by revising its collision relaxation parameter and local equilibrium distri-
bution function. Thus, as a qualitative method, instead of solving the full Boltzmann equation
one solves the modi�ed BGK equation and probably �nds a uni�ed numerical algorithm for
�ows over a wide range of Knudsen numbers.
In the 1990s, applying the asymptotic expansion of the molecular velocity distribution

function to the Maxwellian distribution based on the �ux conservation at the cell interface,
new BGK type schemes [10–12] adapted to the gas �ows of continuum regime have been
presented according to the thoughts of the shock capturing di�erence method. The schemes
have successfully simulated some problems, such as one-dimensional shock wave structures
and two-dimensional shock wave re�ections, inviscid and viscous turbulent �ows, etc. In
the computation of the rare�ed gas �ows, the high resolution explicit and implicit �nite-
di�erence methods to solve two-dimensional BGK-Boltzmann model equations have been set
forth [9, 13–16] based on the introduction of the reduced velocity distribution functions and
the application of the discrete ordinate method. The reliability and e�ciency of the methods
have been demonstrated in applications to both steady and unsteady one- and two-dimensional
rare�ed gas dynamical problems.
In this study, based on the basic characteristics of molecular movement and collision ap-

proaching to equilibrium, the uni�ed simpli�ed velocity distribution function equation adapted
to various �ow regimes can be described by introducing the colliding relaxation parameters and
the local equilibrium distribution function to revise the BGK equation. The reduced velocity
distribution functions can be introduced to reduce the dimensions of the kinetic model equa-
tion. The discrete velocity ordinate method [17] is applied to the reduced distribution functions
in order to replace their continuous dependency on the velocity space, and then the single
kinetic model equation will be cast into hyperbolic conservation equations with non-linear
source terms in the physical space and time. Drawing on the decoupling technique [18, 19] on
molecular movement and collision in the DSMC method, the unsteady time-splitting method
is used to split the distribution function equations into the colliding relaxation equation and
the convective movement equations. The non-oscillatory, containing no free parameters and
dissipative (NND) scheme [20] is extended and applied to solve the convective equations,
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the colliding relaxation equation can be numerically simulated by the aid of the second-order
Runge–Kutta method. The gas kinetic �nite-di�erence method for directly solving the discrete
velocity distribution functions will be established by the way of coupling and iteration. The
mathematical model on the gas kinetic boundary conditions will be developed. To improve
computational e�ciency for various Mach number �ows, three types of quadrature rules are
applied to the discrete velocity space to evaluate the macroscopic �ow parameters at each
point in the physical space. As a result, a uni�ed simpli�ed gas kinetic numerical algorithm
will be developed for the gas dynamical problems from various �ow regimes. The method
is tested in this paper for both the one-dimensional shock tube problems and the �ows over
two-dimensional circular cylinder with various Knudsen numbers.

2. DESCRIPTION OF THE UNIFIED REDUCED VELOCITY DISTRIBUTION
FUNCTION EQUATIONS FOR VARIOUS FLOW REGIMES

Based on the collision spacing theory of microscopic molecular dynamics, the BGK collision
model equation can be revised by using the basic feature of molecular movement and collision
approaching to equilibrium [1, 5, 7, 21]. The local equilibrium distribution function fN from
the Shakov model [4, 9, 13] is taken as the asymptotic expansion in Hermite polynomials
with the local Maxwell distribution function fM as the weighting function. The collision
frequency � of the gas molecules can be described [1, 7–9] by introducing molecular colliding
relaxation parameters related to various �ow regimes and expressed as the function of density,
temperature, the freestream mean free path, and the exponent of molecular power law. The �
and the appropriate fN can be integrated with the macroscopic �ow parameters, the molecular
viscosity transport coe�cients, the thermodynamic e�ect, the molecular power-law models, and
the �ow states from various �ow regimes [22]. Consequently, the uni�ed simpli�ed molecular
velocity distribution function equation which qualitatively describes gas �ow characteristics
from various �ow regimes can be presented with the non-dimensional form in the Cartesian
co-ordinates [9, 13, 22].

@f
@t
+V · @f

@r
= �(fN − f) (1)

fN =fM · [1 + (1− Pr)c · q(2c2=T − 5)=(5PT=2)] (2)

fM = n=(�T )3=2 exp[−c2=T ] (3)

�=8nT 1−�=(5
√
�Kn); Kn= �∞=L (4)

where f is the molecular velocity distribution function which depends on space r, molecular
velocity V and time t. Kn is the Knudsen number related to the ratio of the freestream
mean free path �∞ to the reference length L of the problem. Pr is the Prandtl number with
Pr=�Cp=K and is equal to 2

3 for a monatomic gas, Cp is the speci�c heat at constant pressure,
� and K , respectively, denote the coe�cient of gas viscosity and heat conduction. q and P,
respectively, denote the heat �ux vector and gas pressure. c is the thermal (peculiar) velocity of
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the molecule, and c represents the magnitude of the c, that is c=V−U and c2 = c2x+c
2
y+c

2
z ,

where the c consists of cx=Vx − U; cy=Vy − V and cz=Vz − W along the x-, y- and
z-directions with (U;V;W ) corresponding to three components of the mean �ow velocity U.
� is the temperature exponent of the coe�cient of viscosity which is a constant for a given gas
(=1 for Maxwell molecules, = 0:75 for air, = 0:5 for hard sphere molecules), that can also
be denoted as �=(�+3)=(2(�−1)) for the Chapman–Enskog gas of inverse power law, where
� is the inverse power coe�cient related to the power force F and the distance r between
centres of molecules, that is F =�=r� with a constant �. All of the properties have been non-
dimensionalized, each dimensionless quantity is referred to its equilibrium values at upstream
in�nity (n∞; T∞), the reference speed c∞ is

√
2RT∞, the reference force is mn∞c2∞=2, the

reference heat �ux is mn∞c3∞=2 and the reference time t∞ is L=c∞, the reference distribution
function is n∞=c3∞.
The macroscopic �ow parameters, such as the number density, �ow mean velocity, tem-

perature, pressure, viscous stress tensor and heat �ux vector, can be determined [1, 6, 7, 9, 22]
by the moments of the distribution function over the molecular velocity space.

n(r; t) =
∫
f dV (5)

nUi(r; t) =
∫
Vif dV (6)

3
2
nT (r; t) =

∫
c2f dV (7)

P= nT (8)

�ij(r; t) = 2
∫
cicjf dV − P	ij (9)

qi(r; t) =
∫
c2cif dV (10)

where 	ij is the Kronecker delta, the subscripts i and j each range from 1 to 3. The values
1, 2 and 3 may be identi�ed with components along the x-, y- and z-axis, respectively.

2.1. Reduced distribution function equations for one-dimensional gas �ows

The velocity distribution function Equation (1) for one-dimensional gas �ows can be written
by

@f
@t
+ Vx

@f
@x
= �(fN − f) (11)

The molecular velocity distribution function equation in Equation (11) can be inte-
grated with respect to Vy and Vz with weighting factors 1 and V 2y + V

2
z so that the num-

ber of independent variables in the distribution function f can be reduced by integrating
out the dependence of f on Vy and Vz. The following two reduced distribution functions are
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introduced [23]:

g(x; t; Vx) =
∫ ∞

−∞

∫ ∞

−∞
f(x; t; Vx; Vy; Vz) dVy dVz (12)

h(x; t; Vx) =
∫ ∞

−∞

∫ ∞

−∞
(V 2y + V

2
z )f(x; t; Vx; Vy; Vz) dVy dVz (13)

Integrating out the Vy and Vz dependence over the model Equation (11), the equivalent system
can be obtained [22]:

@g
@t
+ Vx

@g
@x
= �(GN − g) (14)

@h
@t
+ Vx

@h
@x
= �(HN − h) (15)

2.2. Reduced distribution function equations for two-dimensional gas �ows

For analysis of gas �ows in x and y directions around two-dimensional bodies, it is convenient
to introduce the following reduced distribution functions [9, 13, 14] in order to reduce the
number of the independent variables in the distribution function f.

g(x; y; t; Vx; Vy) =
∫ ∞

−∞
f(x; y; t; Vx; Vy; Vz) dVz (16)

h(x; y; t; Vx; Vy) =
∫ ∞

−∞
V 2z f(x; y; t; Vx; Vy; Vz) dVz (17)

The single velocity distribution function Equation (1) can be transformed into two partial
di�erential equations [22]:

@g
@t
+ Vx

@g
@x
+ Vy

@g
@y
= �(GN − g) (18)

@h
@t
+ Vx

@h
@x
+ Vy

@h
@y
= �(HN − h) (19)

The macroscopic �ow parameters denoted by the reduced distribution functions can be
similarly obtained [22] by substituting the above-mentioned reduced distribution functions g
and h into Equations (5)–(10).

3. APPLICATION OF THE DISCRETE VELOCITY ORDINATE METHOD

Based on the principle of probability statistics, the molecular velocity distribution function
possesses the property of the exponential function exp(−c2) [7, 24, 25], the functional de-
pendency of f on the velocity components (Vx; Vy; Vz) belongs to exponential type, and the
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probability of the molecular velocities far removed from the mean velocity U of the �ow is
always negligible. Thus, in order to replace the continuous dependency of the molecular ve-
locity distribution function on the velocity space, the discrete ordinate technique [17, 26] can
be introduced in the kinetic theory of gases to discretize the �nite velocity region removed
from U. This method, which consists of replacing the integration over the velocity space of
the distribution function by an appropriate quadrature, requires the values of the distribution
function only at certain discrete velocity ordinate points. The selection of the discrete velocity
ordinate points is only based on the moments of the distribution functions over the velocity
space. Consequently, the macroscopic �ow moments of the distribution function f over ve-
locity space can be evaluated by the same quadrature procedure with f evaluated at only a
few discrete velocity points in the vicinity of U. The selections of the discrete velocity points
and the range of the discrete velocity space in the discrete ordinate method are somewhat
determined by the problem dependent.
Applying the discrete velocity ordinate method [9, 14, 15] to Equations (18) and (19) for

the velocity components Vx and Vy, the reduced velocity distribution function equations for
two-dimensional gas �ows can be transformed into N1×N2 hyperbolic conservation equations
with non-linear source terms at each of discrete velocity grid points.

@ �Q
@t
+
@Fx

@x
+
@Fy

@y
= �S (20)

with

�Q=

(
g
; 	

h
; 	

)
; Fx=Vx
 �Q

Fy=Vy	 �Q; �S=

(
�(GN
;	 − g
; 	)
�(HN


;	 − h
; 	)

)

where g
; 	; h
; 	; GN
; 	 and H
N

;	, respectively, denote values of g, h, G

N and HN evaluated at
the discrete velocity grid points Vx
 and Vy	, and the subscripts 
 and 	, respectively, represent
the discrete velocity grid indexes in the Vx- and Vy-directions. N1 and N2 represent the number
of discrete quadrature points used in the Vx and Vy directions, respectively.
Once the discrete velocity distribution functions are solved, the macroscopic �ow moments

at each point of the physical space can be obtained by the appropriate discrete velocity
quadrature method.
In terms of the symmetric quality of the exponential function exp(−V 2) over the interval

[−∞;∞], the Gauss–Hermite half-range quadrature from References [26, 27] can be extended
and applied to evaluate of the in�nite integral over all the velocity space of the velocity
distribution function. The discrete velocity points and the weights corresponding to the modi-
�ed Gauss–Hermite quadrature can be obtained using the algorithms described by Huang and
Giddens [27] and by Shizgal [26], which can be used to approximate the integrals with the
exponential type as follows:∫ ∞

0
e−V

2
p(V ) dV ≈

N∑

= 1
W
p(V
) (21)
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where V
 (
=1; : : : ; N ) are the positive roots of the Hermite polynomial of degree N;W
 are
the corresponding weights, the subscript 
 is the discrete velocity index, and p(V ) denotes
the function which can be derived from the integrands in Equations (5)–(10). According
to Kopal’s discussion [28, 29], it is known that for a given number of discrete subdivisions
of the interval (0;+∞), the Gauss–Hermite’s choice of the discrete velocity points V
 and
the corresponding weights W
 yields the optimal discrete approximation to the considered
integration in the sense. The Gauss–Hermite’s V
 and W
 can be tabulated in the table of
the Gauss–Hermite quadrature. However, the number of the discrete velocity points is limited
in this way, as indicates that farther application of the Gauss–Hermite quadrature method to
high speed gas �ows may be restricted. The advantage of using the modi�ed Gauss–Hermite
quadrature formula [9, 22] is its high accuracy, but for high freestream Mach number �ows, the
number of discrete velocity grid points needed to cover the appropriate velocity range could
become quite large. To simulate hypersonic �ows, the composite integration method based
on equally spaced three-point Newton–Cotes formulas and the Gauss–Legendre numerical
quadrarure rule whose integral nodes are determined by using the roots of the kth Legendre
polynomial have been applied to this study [22].

4. NUMERICAL ALGORITHM ON THE VELOCITY DISTRIBUTION
FUNCTION EQUATIONS

4.1. Numerical method for one-dimensional gas �ows

Recurring to the discrete velocity ordinate method, the reduced velocity distribution function
equations Equations (14) and (15) can be transformed into the hyperbolic conservation laws
form at each of discrete velocity points (Vx
; 
=1; : : : : : : N ) which can be numerically solved
by the �nite-di�erence method of computational �uid dynamics. The dominating equations of
the discrete velocity distribution functions g
 and h
 for one-dimensional gas �ows can be
written [22, 30] as

@U
@t
+
@F
@x
= S (22)

with

U =

(
g


h


)
; F =Vx
U; S=

(
�(GN
 − g
)
�(HN


 − h
)

)

where g
; h
; GN
 and HN

 , respectively, correspond to the values of g; h; G

N and HN at
the discrete velocity ordinate points Vx
, and the subscripts 
 represent the discrete velocity
grid indexes in the Vx-direction.
To numerically evaluate the convective part of the set of Equations (22), the NND scheme

[20] is used, which is semi-discretized non-oscillatory, contains no free parameters, and is dis-
sipative with the distinguished capability of capturing shock and other contact discontinuities.
The term (@U=@t) in Equation (22) can be discretized using the second-order Runge–Kutta
method. As a result, the �nite-di�erence second-order scheme can be constructed for solving
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the governing Equations (22) at each of discrete velocity ordinate points, as follows:

	tU ∗ = R(Un)

U ∗ =Un +�t	tU ∗

	tU ∗∗ = R(U ∗)

Un+1 =Un +
�t
2
(	tU ∗ + 	tU ∗∗)

(23)

The operator R(Un) is set [20] as

R(Un)= − 1
�x
(Hn

i+1=2 −Hn
i−1=2) + S

n
i

with the numerical �ux de�ned by

Hi+1=2 = F+i+1=2L + F
−
i+1=2R

F+i+1=2L = F
+
i +

1
2
min mod(�F+i−1=2;�F

+
i+1=2)

F−
i+1=2R = F

−
i+1 −

1
2
min mod(�F−

i+1=2;�F
−
i+3=2)

�F±
i+1=2 = F

±
i+1 − F±

i

Here, F+ =A+U and F−=A−U , respectively, denote the positive and negative �uxes of
F =AU , and A= @F=@U is the corresponding Jacobian matrix.
The �ux limiter min mod operator is de�ned by

min mod(x; y)= 1
2 [sgn(x) + sgn(y)]min(|x|; |y|) (24)

The stable condition of the scheme can be written as [22]

�ts =CFL
/(

�
2
+
3
2
|Vx
|
�x

)
max

(25)

where, CFL is the adjusting coe�cient of the time step in the scheme, that is set as CFL=0:95.
Considering the basic feature of the molecular movement and colliding approaching to

equilibrium, the time step size (�t) in the computation should be controlled by coupling the
stable condition (�ts) of the scheme with the local mean collision time (�tc) [18,31]:

�t= min(�ts;�tc) (26)

Here, �tc = 1=�max.

4.2. Numerical algorithm for two-dimensional gas �ows

To treat arbitrary geometries, the dominating Equations (20) of the discrete distribution
functions g
; 	 and h
; 	, for two-dimensional gas �ows can be written [22] in general
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co-ordinates (�; �):

@U
@t
+
@F
@�
+
@G
@�
= S (27)

Here,

U = J �Q; F = �UU; G= �VU; S= J �S

Note that �U , �V are the so-called ‘contravariant molecular velocity’ de�ned as �U =Vx
�x +
Vy	�y; �V =Vx
�x + Vy	�y; J is the Jacobian of the general transformation, that is J = @(x; y)=
@(�; �). The metric Jacobian and the metric terms of the general transformation are, respec-
tively, denoted as

J = x�y� − y�x�; �x=
1
J
y�; �x=− 1

J
y�; �y=− 1

J
x�; �y=

1
J
x�

The Jacobian coe�cient matrices A= @F=@U and B= @G=@U of the transformed equations
(27) are diagonal and have real eigenvalues a= �U and b= �V , and the eigenvalue of @S=@U
is taken as c=−�.
Based on the Taylor expanding with the second-order accuracy in time, the time-splitting

method for the unsteady equation can be extended and employed to decompose Equation (27)
into the colliding relaxation equation with the non-linear source terms and the convective
movement equations in position space so as to couple to solve them in the computation
[22, 30].

Un+1 =Un −�t(1 + c�t)(a	� + b	�)Un +
�t2

2
(a2	�2 + 2ab	�� + b2	�2)Un

+�t
(
1 +

c
2
�t
)
Sn +O(�t2;��2;��2)

=
[
1− a�t	� + a

2

2
�t2	�2

] [
1− b�t	� + b

2

2
�t2	�2

]

×
[
1 + c�t

(
1 +

c
2
�t
)]
Un +O(�t2;��2;��2)

The above-mentioned di�erence scheme can be split as

U ∗ = Ls(�t)Un=Un +
(
1− �

2
�t
)
�tSn (28)

U ∗∗ = L�(�t)U ∗=
[
1− b�t	� + b

2�t2

2
	�2
]
U ∗ (29)

Un+1 = L�(�t)U ∗∗=
[
1− a�t	� + a

2�t2

2
	�2
]
U ∗∗ (30)
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It can be shown that the di�erence expressions of Equations (28), (29) and (30) are,
respectively, in accord with di�erential equations

@U
@t
= S (31)

@U
@t
+
@G
@�
=0 (32)

@U
@t
+
@F
@�
=0 (33)

For the �rst step in the computation, the equation @U=@t= S with non-linear source item
can be solved by the improved Euler method.

	tU ∗ =
(
1− �

2
�t
)
S(Un)

U ∗ =Un +�t	tU ∗

	tU ∗∗ =
(
1− �

2
�t
)
S(U ∗)

Un+1 =Un +
�t
2
(	tU ∗ + 	tU ∗∗)

(34)

For the second step, the convective movement equation @U=@t + @G=@�=0 can be numer-
ically solved by the NND-4(a) scheme [32] which is two-stage predictor–corrector scheme
with second-order accuracy in time and space.

U ∗ =Un − �t
��
(Hn

j+1=2 −Hn
j−1=2) (35)

Un+1 =
1
2

[
Un +U ∗ − �t

��
(H ∗

j+1=2 −H ∗
j−1=2)

]
(36)

Hj+1=2 =G+j+1=2; L +G
−
j+1=2; R

G+j+1=2; L =G
+
j +

1
2
min mod(�G+j−1=2;�G

+
j+1=2)

G−
j+1=2; R =G

−
j+1 −

1
2
min mod(�G−

j+1=2;�G
−
j+3=2)

For the third step, the equation @U=@t + @F=@�=0 is equally solved by the NND-4(a)
scheme.
Considering simultaneously proceeding on the molecular movement and colliding relaxation

in real gas, the computing order of the previous and hind time steps is interchanged to couple
to solve the convective parts and the source term in the computation. The �nite-di�erence
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second-order scheme directly to solve the discrete velocity distribution functions is developed
as

Un+1 =Ls(�t=2)L�(�t=2)L�(�t)L�(�t=2)Ls(�t=2)Un (37)

In the aforementioned scheme, the integration operator Ls(�t) of the source term is done
using the improved Euler method de�ned by Equation (34). The one-dimensional space op-
erator L�(�t) and L�(�t) of the convective movement are respectively approximated by the
NND-4(a) scheme de�ned by Equations (35) and (36). The time step �t in the computation
[22, 30, 31] can be determined by the following stability conditions:

�t= min(�tc;�ts) (38)

Here, �ts =CFL=max(�=2; | �U |=��; | �V |=��).

4.3. Numerical implementation of boundary conditions

In the kinetic theory of gases, the interaction between the gas and the body surface is ex-
pressed by the boundary condition acting on the molecular velocity distribution function. The
distribution function of the gas molecules near the surface will not be an equilibrium distri-
bution. At the present, the models describing the interaction of the gas with the solid surface
are largely phenomenological in nature [7], the most widely used models have specular re-
�ection, perfect di�use re�ection, and the combination of both. The perfect di�use re�ection
is applied in this study [22]. In order to specify the interaction of the molecules with the
solid surface, it is assumed that molecules which strike the surface are subsequently emitted
with a Maxwellian velocity distribution fully accommodating to the wall temperature Tw and
velocity (Uw; Vw).
For c · n¿0 in the wall cells of two-dimensional �ows [9, 13, 22]

gw
; 	 =
nw
�Tw

exp
(
− (Vx
 −Uw)

2 + (Vy	 − Vw)2
Tw

)
(39)

hw
; 	 = Twgw
; 	=2 (40)

Here, the density of molecules di�using from the surface, nw, which is not known previously,
must be determined by means of a further condition. For an impermeable wall, the particle
�uxes normal to the wall vanish from the mass balance condition on the surface. That is∫

cn¿0
cnf dV=

∫
cn¡0

−cnf dV (41)

nw =−2
(
�
Tw

)1=2 ∫ ∞

−∞

∫ ∞

−∞
c−n g(x; y; t; Vx; Vy) dVx dVy (42)

where, cn=(Vx−U )nx+(Vy−V )ny, c−n =(cn−|cn|)=2, and n is the outward unit vector normal
to the solid surface.
For c ·n60, the discrete velocity distribution functions at the wall cells are solved by using

second-order upwind-di�erence approximations from the adjacent grids.
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The distribution function is assumed to be in equilibrium at in�nity. However, the outer
boundary must be in some �nite distance from the body, so the outer boundary conditions are
treated using characteristics-based boundary conditions which are in accord with the upwind
nature of the interior point scheme [13, 22]. From this standpoint, the reduced distribution
functions for outgoing molecules through the outer boundaries are determined by the second-
order di�erence approximation from the interior points. For molecules incoming from outside,
the following conditions are used for the calculation to the boundary cells: (1) Along up-
stream boundary ahead of the body, the distribution functions of the ingoing molecules from
upstream are set as an equilibrium distribution with prescribed free stream properties. (2) In
the downstream boundary, it is assumed that there is no gradient along the outward direction
for the distribution function; that is, for incoming molecules:

@�U
@�

=0 (43)

For �ow problems with symmetry, the half-�ow �eld is only computed by the way where the
symmetric boundary is displaced outwards from the symmetric line of the �ow �eld to increase
�ctitious cells so that the cells along the symmetric line are processed as interior points and
the symmetry conditions are assigned to the distribution functions along the symmetrical line
of the �ow �eld [22]. The molecular velocity distribution functions fr in the �ctitious cells
can be expressed by the distribution functions of the interior �ow �eld:

fr(r;V; t)=f(r− 2(n · r)n;V − 2(n ·V)n; t) (44)

where n is the unit vector normal to the symmetrical line and pointing to the interior of the
�ow �eld.

5. NUMERICAL EXAMPLES AND RESULTS

The one-dimensional shock-tube problems and the �ows past two-dimensional circular cylinder
with various Knudsen numbers are computed to illustrate the accuracy of the present numerical
method and to demonstrate its reliability in solving the gas dynamical problems from rare�ed
�ow to continuum. In the computation, the convergence of a steady-state solution is assumed
to have occurred when the quadratic global relative error of the �ow quantities (e.g. density,
�ow velocity, temperature), which are evaluated by the discrete velocity numerical integration
methods described in Section 3, between successive iteration steps is less than 10−4.

5.1. One-dimensional shock-tube problems with various Knudsen numbers

5.1.1. Unsteady Riemann shock-tube problem. This problem can be described by the way
where a diaphragm located at x=0:5 divides a one-dimensional �ow �eld into two regions,
each in a constant equilibrium state at t=0. Here the case is considered with initial states:
=0:445; T =13:21; u=0:698 for 0:06x60:5 and =0:5; T =1:9; u=0:0 for 0:5¡x61.
The ratio of speci�c heats � is 5

3 for a monatomic Maxwell gas. The cell size �x=0:01
in the physical space was set and the 6-points Gauss–Legendre numerical quadrature rule
with the discrete velocity sub-spacing �V =2:0 was employed to evaluate the macroscopic

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:361–382



NUMERICAL ALGORITHM FOR BOLTZMANN MODEL EQUATION 373

0 0.25 0.5 0.75 1

Position

0

2

4

6

8

10

12

14

Te
m

pe
ra

tu
re

rieman-exact--Temperature
cal. euler limit solution
cal. Kn=0.0001
cal. Kn=0.001
cal. Kn=0.005
cal. Kn=0.01

Figure 1. Temperature pro�les of shock-tube problem for various Kn.

�ow moments over the velocity space, which has 61 discrete velocity grid points rang-
ing from −10 to 10. The computing time step (�t) was determined by Equation (26).
The computational results (denoted as symbols) of non-dimensional temperature pro�les for
Kn=0:01; 0:005; 0:001; 0:0001 at time t=0:1314 are presented in Figure 1. To see the con-
tribution of the collision relaxation term in the gas kinetic model equation to the distribution
function, we test a numerical method which is generated from Equation (1) by neglecting
the collision source term and setting the distribution function in convective term equal to
the equilibrium Maxwellian distribution (f=fM). The solution obtained by such a scheme is
named as the Euler limit solution of continuum �ow. It is shown from Figure 1 that the bigger
is the Knudsen number, the thicker is the shock wave. The smaller is the Knudsen number
down to Kn=0:0001, the crisper shock and expanding wave pro�les are given. The results
appropriate to Kn=0:0001 are in good agreement with the computed Euler limit solution and
the Riemann exact solution. Figure 1 qualitatively reveals the changing process that the gas
�ow becomes from rare�ed �ow to continuum along with diminishing the Knudsen number.

5.1.2. The normal shock-structure problem. In the case of the normal shock wave, a shock
wave involves the transition from a uniform supersonic upstream (state 1) to a uniform sub-
sonic downstream (state 2). The shock Mach number Ms is de�ned as the ratio of the speed
of the wave, relative to the upstream gas, to the speed of sound in this gas. The upstream
state is chosen as the reference state with 1 = 1; T1 = 1 and P1 = 1. The relations of the �ow
states (upstream 1; T1; U1 and downstream 2; T2; U2) across the wave are de�ned in terms of
the Rankine–Hugoniot conditions. The �ow region is extended over a distance −x1¡x¡x2.
A discontinuity between upstream and downstream states was set at x=0 as the initial con-
dition. The case of Ms = 8 for argon gas is computed with Pr=2=3; �=5=3. The space grid
points used are 121 with �x=0:25�1, and the Newton–Cotes quadrature formula was em-
ployed to evaluate the macroscopic �ow moments with 121 discrete velocity ordinate points
using the discrete velocity spacing �V =0:35. The length scale is normalized by the mean
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Figure 2. Comparison of computed temperature and density pro�les with DSMC results for Ms = 8.

free path (�1) in front of the shock wave. The quoted mean free path is de�ned in terms
of the coe�cient of viscosity by Equation (4.52) from Reference [6]. The molecular model
parameters for argon are employed from Appendix A in Reference [6]. The coe�cient of gas
viscosity has been assumed as the power-law temperature dependence, that is � ∝ T�. Here,
the viscosity index is set as �=0:75. In Figure 2, the computed results for the density and
temperature pro�les are compared with Bird’s DSMC results from Reference [6], where the
line denotes the computed results and the symbols denote the DSMC results. The density
is normalized in terms of the densities 1 and 2 in front of and behind the shock wave as
indicated in the �gure. The normalized values of the temperature are de�ned in a similar man-
ner. The origin has been set at the point in the pro�le when the density is midway between
the upstream and downstream values. It is shown from Figure 2 that the overall agreement
is good and the agreement of density is better than that of temperature between the DSMC
results and the present calculation.
The viscous shear stress and heat �ux vector are sensitive quantities inside the shock, which

are de�ned by Equations (9) and (10). Figures 3 and 4, respectively, show the computed
results for the heat �ux and viscous shear stress pro�les in the x-direction for the above case
of Ms = 8, along with the comparison with the DSMC results from Reference [33], where the
heat �ux qx has been normalized by dividing by the product of the density and the cube of
the most probable velocity in the undisturbed gas, and the viscous shear stress �xx has been
normalized by dividing by the product of the density and the square of the most probable
velocity in the undisturbed gas. The origin has been set at the point in the pro�le where
the density is midway. It can be shown from Figures 3 and 4, for the high Mach number
(Ms = 8) shock �ow, the pro�les of the viscous stress and heat �ux exist high deviation from
the symmetric equilibrium distribution and appear the prominent asymmetric distribution based
on the centre of the wave, and the qualitative agreement between the DSMC results and the
present calculation can be obtained, however, the di�erence increases in the front of the shock
wave.
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Figure 3. Heat �ux pro�les in the interior of the shock wave for Ms = 8.
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Figure 4. Viscous stress pro�les in the interior of the shock wave for Ms = 8.

5.2. Supersonic �ows past circular cylinder

The steady supersonic �ows past a circular cylinder under di�erent freestream Mach (M∞)
and Knudsen numbers are computed. Here, due to symmetry, only half-plane on the cylinder
is considered and symmetry boundary conditions were employed. The mesh system used is
71× 51 (streamwise × surface normal) in the physical space and the modi�ed Gauss–Hermite
quadrature formula with 32× 16 discrete velocity ordinate points in the Vx- and Vy-direction
was employed. In Figure 5, the comparisons between the calculated cylinder drag coe�cients
and experimental data for argon gas are given for the cases of M∞=1:96, the ratio of the wall
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Kn=1 Kn=0.1
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Figure 6. Density contours of the cylinder for the supersonic �ow with various Kn.

temperature to the total temperature Tw=T0 = 0:7; Pr=2=3; �=5=3; Kn=6, 0.6, 0.08, 0.01,
0.001 and 0.0001. The symbols (◦) denote the experimental data from Reference [34] and
the relevant continuum �ow limit solution, the symbols (•) denote the computed results. It is
shown that the computed results agree with the experimental data well. The computed results
of the density contours past the circular cylinder with various Knudsen numbers are shown
in Figure 6, in respect of the �ow states of Pr=1; Tw=T0 = 1; �=5=3; M∞=1:8; Kn=1,
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Figure 7. Streamline structure past circular cylinder with various Kn.

0.1, 0.03 and M∞=4; Kn=0:001. Figure 7 shows the enlarged views of the streamline past
the circular cylinder for the cases of Kn=0:1 and Kn=0:001. It is shown in Figures 6 and
7 that there is no obvious shock wave disturbing region for the fully rare�ed �ow related
to Kn=1, for the near continuum �ow of Kn=0:001, the �ow structures including the front
bow shock, stagnation region and near wake are well captured, and the thickening of the front
bow shock are the noticeable di�erences in the more rare�ed cases of Kn=0:1, 0.03. The
smaller is the Knudsen number, the thinner and clearer is the bow shock occurring in front
of the body. Figures 6 and 7 qualitatively reveal that the gas �ow approaches to continuum
�ow from rare�ed transitional �ow while the Knudsen number is diminishing from Kn=1
to 0:001. To qualitatively test the reliability of the computed results of the macroscopic �ow
parameters in the �ow �eld, Figure 8(a) and 8(b) show the comparison between the present
computed results for the density, pressure and Mach number contours past the cylinder and
Yang and Huang’s calculation from Reference [9] for the above case of Kn=0:1, M∞=1:8.
It can be shown that good agreement of the two results is obtained from Figure 8.
To try out the computation of the present algorithm for the two-dimensional continuum

gas �ow past the circular cylinder, the case of Kn=0:0001; M∞=1:8; Pr=2=3; Tw=T0 = 1
and �=5=3 was set with the 71× 51 space cells and the modi�ed Gauss–Hermite quadrature
formula with 32× 16 discrete velocity grid points. The computed results of Mach number
contours are shown in Figure 9. The �ow structures including the front bow shock, the
stagnation region, the recompression shock, and the wake region are captured very well.
Figure 10 shows an enlarged view of the streamlines past the circular cylinder, as is just so
the feature of the continuum �ow.
The stagnation line pro�les of �ow velocity are shown in Figure 11 together with the

DSMC results [35] for two Knudsen numbers (Kn=1; 0:3) with the �ow states of M∞=1:8,
Pr=1, Tw=T0 = 1 and �=1:4. Here, the space grid system used is 41× 35, and the modi�ed
Gauss–Hermite quadrature formula with 32× 16 discrete velocity ordinate points was em-
ployed. In Figure 11, the quantities (U/U00) in the vertical axes denote the non-dimensional
velocity values (U=U∞), and the quantities (X/LMD00) in the horizontal axes denote the
non-dimensional distance (X=�∞) far from the stagnation point. In general, good agreement
between the present computations and DSMC solutions can be observed. However, it’s shown
from Figure 11 that, as X=�∞ in the horizontal axis approaches to the stagnation point, the
decreasing rate of the �ow velocity U=U∞ in the present computations is smaller than that in
the DSMC results for the case of Kn = 0:3. With regard to the reasons, it’s may be likely to
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Figure 8. Density, pressure and Mach number contours past the cylinder for Kn=0:1, M∞=1:8,
(a) Yang and Huang’s results from Reference [9]; (b) the present computed results.

use excessively coarse mesh system (41× 35) in the computation. For the rare�ed transition
�ow of the case of Kn = 0:3, there exists the thicker shock disturbing region in front of the
circular cylinder so that the �ow velocity drops more slowly and exists discontinuous decline,
as need more re�ned grids to catch the shock disturbing region. On the other hand, the DSMC
method provides certain statistical �uctuation with the simulated results, as also a�ects the
comparison.

6. CONCLUDING REMARKS

In this work, the non-linear Boltzmann model equation is transformed into the hyperbolic
conservation equations with non-linear source terms by introducing the reduced velocity dis-

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:361–382



NUMERICAL ALGORITHM FOR BOLTZMANN MODEL EQUATION 379

1.
24

0.
74

0.58

0.41

0.25

0.
91

1.
08

1.2
4

1.41

1.57
1.74

1.99

1.82

1.32

0.17
0.33 0.41

Mach No.
Kn=0.0001,Mach=1.8
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Figure 10. Enlarged view of streamlines past the cylinder with Kn=0:0001.

tribution functions and applying the discrete velocity ordinate method. Based on the Taylor
expanding with second-order accuracy, the time-splitting method for the unsteady equation
and the uncoupling technique on molecular movement and colliding from DSMC method are
used to split up the velocity distribution function equation into the colliding relaxation equa-
tion and the convective movement equations. The NND �nite-di�erence scheme is employed
to solve convective equations and the second-order Runge–Kutta method is used to numeri-
cally simulate the colliding relaxation equation. The mathematical models for the gas–surface
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interactions and gas kinetic boundary conditions are studied and used in the numerical method.
As a result, a uni�ed simpli�ed gas kinetic algorithm for the gas dynamical problems from
various �ow regimes has been developed. The computations of one- and two-dimensional
gas �ows from rare�ed transition to continuum indicate that both high resolution of �ow
�elds and good qualitative agreement with theoretical, DSMC and experimental results can
be obtained. The present method provides an economical and e�cient way that the velocity
distribution function equation describing microscopic molecular transport phenomena can be
transformed into hyperbolic conservation equations to be numerically solved with the �nite-
di�erence method of computational �uid dynamics and that the gas dynamical problems from
rare�ed �ow to continuum can be e�ectively simulated. The present method has been extend-
ing and applying to simulate three-dimensional gas �ows. In addition, farther investigation on
the choice and reduction of the number of discrete velocity ordinate points in velocity space
to simulate high Mach number �ows will be processed, and the present numerical method
itself need to be further studied.
It has been shown from the above computations that the results of the present method

are not sensitive to the grid spacing in the physical space or the velocity space if only
the computing precision be satis�ed; however, the �ner is the grid, the better should be the
precision of the results for certain at the expense of more computing memory and time. The
present method is considerable stable and e�cient without the limitation of the cell size, unlike
the DSMC method which exists statistical �uctuations and requires the grid spacing have to
be less than the mean free path. In general, the computational speed for the present method
seems be faster than the DSMC method in computing one- and two-dimensional problems
of the rare�ed �ows. As the molecular mean collision time in the continuum �ow regime is
little, the computing time step given by Equation (38) will be quite little at the magnitude
of 10−5, therefore, the convergent speed of the present method seems be slower than that of
the Navier–Stokes solver for continuum �ows with the Knudsen number subjacent to 10−4.
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It has been shown from the computations that the CPU runtime required for the present
method increases as the Knudsen number decreases from rare�ed �ow regime to continuum
�ow regime, and the computations of the one- and two-dimensional �ows can be processed
in the 128M or so microcomputers.
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